Data Store
Setup, Querying, and View Population

 Downloads: https://downloads.mysql.com/archives/workbench/

e Version 8.0.15


https://downloads.mysql.com/archives/workbench/

Prereq: Environment Variables for Secrets

* QOur server-side app runs in two different contexts: development and production
* Industrial apps can have additional contexts, such as test and staging

* |deally, variables specific to a context are "passed in" rather than hard-coded
 What port to listen on?
 What username and password to connect to the database with?

* The easiest way to pass a variable to a program is via environment variables

 There are many ways to manage environment variables, we'll look at a common, modern way



Using a .env File

* We'll store our project's context-specific variables in a .env file
* This file should not be added to our project's repo because it stores secrets
* 30, let's add a ".env' line to the .gitignore file to tell git not to include it
* Then, let's create a file named '.env' and add some variables to it:
« NODE_ENV=development
« PORT=1234
* Finally, we need to add a library and initialize it in our project to read these vars:

 npm package: https://www.npmjs.com/package/dotenv

* $ npm install --save dotenv

 Add code at the top of our server's initialization:
// Read environment variables

import * as dotenv from "dotenv";
dotenv.config();

* Then we need to go replace our hard-coded 1234 with: process.env.PORT and test.

 We'll also need to add a .env file to our server's project folder before deploying.


https://www.npmjs.com/package/dotenv

Installing a
Relational Database Management System (RDBMS)

 We'll choose MySQL, a popular open source database
* |nstall using aptitude, Ubuntu's package manager (app store):
» $ sudo apt install mysql-server
* Configure using the included installer:
* $ sudo mysql_secure_installation
* Options (we're using these to simplify our process, you should use safer options in a real production server):
e Secure password checker: No
* Root password: Choose a password you know (perhaps your computer's password or ONYEN)
* Remove anonymous users: Yes
* Disable remote root login: No
* Remove test database: Yes

* Reload table privileges: Yes



Setting up a new Database

$ sudo mysq|
* Begins an interactive MySQL prompt.
mysql> SHOW databases;
A SQL command to list the databases managed by MySQL
mysql> CREATE DATABASE blog;
* Creates a new database named blog
mysqgl> GRANT ALL PRIVILEGES ON blog.*
TO 'blog_app'@'%'
IDENTIFIED BY 'choose_a_password’;
 Create a user, also named 'blog’, who can access the database, and connect from any IP '@%'

MySQL is another server daemon running on your cloud machine listening on port 3306.

We need to open the firewall to access.



Accepting Outside Connections

First, MySQL server needs to be configured to listen on all IP addresses (currently only on listening on 127.0.0.1/localhost)
« $ sudo nano /etc/mysqgl/mysql.conf.d/mysqld.cnf
* Look for the line: bind-address = 127.0.0.1
 Change to: bind-address = *

Open the AWS EC2 console: https://console.aws.amazon.com/ec?2/

Select your running instance
In its detail description, you'll see "Security Groups" and yours was setup via the Launch Wizard, click on "launch-wizard-N"
We need to add an inbound rule to permit inbound connections for MySQL.:

* Add Rule: MySQL/Aurora

e For source; 0.0.0.0/0

Save


https://console.aws.amazon.com/ec2/

Test the Connection

e |et's try connecting from MySQL Workbench!
* Create a new connection

 Host: your server's |IP

 Username: blog_dev

« Schema/Database: blog_dev

 Password: what you chose
» Save the connection once it works

 (And let's go add and test a production database and user, as well.)



Creating a Table

e Let's create a table in the blog_dev database named todos
 We'll setup this table with a few columns:

e |d: INT primary key, auto increment

e jtem: Text

e url: Text

e [Let's add a few rows, as well



Shortcuts We're Taking that You Shouldn't

e For the purposes of simplifying our development process this week, we're taking
a few shortcuts you generally should not.

1. You should not open up access to your database for *any™ IP to connect to.

2. You should run a development database separate from a production database
(ideally on your development machine in a container/ VM)

3. You should probably use a database as a service (DBaaS) such as Amazon RDS
rather than self-installing and managing a database.

Database Administrator (DBA) can be a full-time job and career path.



Adding Database Settings to .env

* |et's now add additional variables to our .env files. We'll need to do this both locally in our
machine and on the server.

* Local:
MYSQL_HOST=<your-server-ip>
MYSQL_USER=blog
MYSQL_DB=blog
MYSQL_PASSWORD=<your-password>

e Server:
MYSQL_HOST=1localhost
MYSQL_USER=blog
MYSQL_DB=blog
MYSQL_PASSWORD=<your-password>




Connecting to a Data Store from Code

 Now that your database Is running

e Database vendors (or the open source community) will provide libraries in
most popular programming languages for interacting with their database

« We'll use the open source MySQL2

« NPM Package: https://www.npmjs.com/package/mysql2

 npm install --save mysql2

 npm install --save-dev types/mysql2


https://www.npmjs.com/package/mysql2

Add TypeScript File for DB Connection



Querying



