
Data Store
Setup, Querying, and View Population

• Downloads: https://downloads.mysql.com/archives/workbench/

• Version 8.0.15

https://downloads.mysql.com/archives/workbench/

Prereq: Environment Variables for Secrets

• Our server-side app runs in two different contexts: development and production

• Industrial apps can have additional contexts, such as test and staging

• Ideally, variables specific to a context are "passed in" rather than hard-coded

• What port to listen on?

• What username and password to connect to the database with?

• The easiest way to pass a variable to a program is via environment variables

• There are many ways to manage environment variables, we'll look at a common, modern way

Using a .env File
• We'll store our project's context-specific variables in a .env file

• This file should not be added to our project's repo because it stores secrets

• So, let's add a '.env' line to the .gitignore file to tell git not to include it

• Then, let's create a file named '.env' and add some variables to it:

• NODE_ENV=development

• PORT=1234

• Finally, we need to add a library and initialize it in our project to read these vars:

• npm package: https://www.npmjs.com/package/dotenv

• $ npm install --save dotenv

• Add code at the top of our server's initialization:

// Read environment variables
import * as dotenv from "dotenv";
dotenv.config();

• Then we need to go replace our hard-coded 1234 with: process.env.PORT and test.

• We'll also need to add a .env file to our server's project folder before deploying.

https://www.npmjs.com/package/dotenv

Installing a
Relational Database Management System (RDBMS)
• We'll choose MySQL, a popular open source database

• Install using aptitude, Ubuntu's package manager (app store):

• $ sudo apt install mysql-server

• Configure using the included installer:

• $ sudo mysql_secure_installation

• Options (we're using these to simplify our process, you should use safer options in a real production server):

• Secure password checker: No

• Root password: Choose a password you know (perhaps your computer's password or ONYEN)

• Remove anonymous users: Yes

• Disable remote root login: No

• Remove test database: Yes

• Reload table privileges: Yes

Setting up a new Database
• $ sudo mysql

• Begins an interactive MySQL prompt.

• mysql> SHOW databases;

• A SQL command to list the databases managed by MySQL

• mysql> CREATE DATABASE blog;

• Creates a new database named blog

• mysql> GRANT ALL PRIVILEGES ON blog.*  
 TO 'blog_app'@'%'  
 IDENTIFIED BY 'choose_a_password';

• Create a user, also named 'blog', who can access the database, and connect from any IP '@%'

• MySQL is another server daemon running on your cloud machine listening on port 3306.

• We need to open the firewall to access.

Accepting Outside Connections
• First, MySQL server needs to be configured to listen on all IP addresses (currently only on listening on 127.0.0.1/localhost)

• $ sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf

• Look for the line: bind-address = 127.0.0.1

• Change to: bind-address = *

• Open the AWS EC2 console: https://console.aws.amazon.com/ec2/

• Select your running instance

• In its detail description, you'll see "Security Groups" and yours was setup via the Launch Wizard, click on "launch-wizard-N"

• We need to add an inbound rule to permit inbound connections for MySQL:

• Add Rule: MySQL/Aurora

• For source: 0.0.0.0/0

• Save

https://console.aws.amazon.com/ec2/

Test the Connection
• Let's try connecting from MySQL Workbench!

• Create a new connection

• Host: your server's IP

• Username: blog_dev

• Schema/Database: blog_dev

• Password: what you chose

• Save the connection once it works

• (And let's go add and test a production database and user, as well.)

Creating a Table
• Let's create a table in the blog_dev database named todos

• We'll setup this table with a few columns:

• id: INT primary key, auto increment

• item: Text

• url: Text

• Let's add a few rows, as well

Shortcuts We're Taking that You Shouldn't

• For the purposes of simplifying our development process this week, we're taking
a few shortcuts you generally should not.

1. You should not open up access to your database for *any* IP to connect to.

2. You should run a development database separate from a production database 
(ideally on your development machine in a container/ VM)

3. You should probably use a database as a service (DBaaS) such as Amazon RDS
rather than self-installing and managing a database.

Database Administrator (DBA) can be a full-time job and career path.

Adding Database Settings to .env
• Let's now add additional variables to our .env files. We'll need to do this both locally in our

machine and on the server.

• Local:

MYSQL_HOST=<your-server-ip>

MYSQL_USER=blog

MYSQL_DB=blog

MYSQL_PASSWORD=<your-password>

• Server:

MYSQL_HOST=localhost

MYSQL_USER=blog

MYSQL_DB=blog

MYSQL_PASSWORD=<your-password>

Connecting to a Data Store from Code
• Now that your database is running

• Database vendors (or the open source community) will provide libraries in
most popular programming languages for interacting with their database

• We'll use the open source MySQL2

• NPM Package: https://www.npmjs.com/package/mysql2

• npm install --save mysql2

• npm install --save-dev types/mysql2

https://www.npmjs.com/package/mysql2

Add TypeScript File for DB Connection

Querying

