Deploying to the Cloud

Today we'll deploy your Node.js server application
on a machine running in the AWS cloud!

* Register for AWS
e (Go to the service EC2
e Launch New Instance

e Check the "Free-tier Only" box in the search and search for Ubuntu

e Select Ubuntu Server 18.04 LTS (HVM) which is a Linux Operating System

Instance Configuration

General Purpose t2.micro (Free-tier Eligible)

Next: Configure Instance Details (Accept Defaults)

Next: Add Storage (Accept Defaults)

Next: Add Tags (Accept Defaults)

Next: Configure Security Group

 Add 2 rules and from the Type drop down select HTTP and HTTPS

 Add 1 more custom TCP rule for port 1234 and accept sources 0.0.0.0/0, ::/0
* This opens up firewall rules that allow us to run HTTP and HTTPS on server

Review and Launch, Launch!

Key Pairs

Once the server launches, you need to be able to log into it!

Amazon EC2 does this by installing a cryptographically secure key pair to
authenticate you with over SSH.

You should create a new Key Pair name ("COMP426-2019") and download
it.

You'll download a .pem file that we'll use in order to log into the server.
From the "Launch Success" screen, you'll see a link to an Instance ID that

looks something like: i-0e52e1ca8ac3522006 - click it to see the details of
your server

The Instances Screen

Q Filter by tags and attributes or search by keyword Q 1to 1 ol
- Name + Instance ID « Instance Type =~ Availability Zone ~ Instance State -~ Status Checks -~ Alarm Status
- I-0e52e1ca8ac352206 t2.micro us-east-1c) running @ 2/2 checks ... None ‘,.5. |

~

Your Servers A Server's IP Address

S
Instance: I I-0e52e1ca8ac352206 Public DNS: ec2-54-159-184-160.compute-1.amazonaws.com

Description Status Checks Monitoring Tags

Instance ID i-0e52e1ca8ac352206 Public DNS (IPv4) ec2-54-
1.am

Instance state running IPv4 PublicIP 54.159.184.160

9-184-160.compute-
s.com

SSH'ing with a PEM File

Let's setup a directory in your user's SHOME directory for SSH files
e $ mkdir -p ~/.ssh

Move the .pem file to it

¢ $ mv ~/Downloads/COMP426-2019.pem ~/.ssh

(Mac Only) Set more restrictive file permissions

e $ chmod 0400 ~/.ssh/COMP426-2019.pem

Try SSH'ing in and hopefully you can login!

¢ $ ssh -i ~/.ssh/COMP426-2019.pem ubuntu@<your-server-ip>

Update Your Server's "App Store"
and Upgrade Preinstalled Operating System Programs

 The way to think of a Linux package manager like "aptitude” on Ubuntu is
like an app store for developers and systems admins that is run at the

command line

* The operating system keeps a local cache of package versions and it's best
to update that cache because it could be out of date:

« $ sudo apt-get update

 There may also be security and bug fixes to programs since the latest
release of the operating system. It's worth going ahead and upgrading:

e $ sudo apt-get upgrade

Let's Generate an SSH Key to
|ldentify the Server on GitHub

* Generate an RSA Key-Pair:
e $ ssh-keygen -t rsa -b 4096
* Press enter to accept defaults without passphrase
* Print out the generated public key:
o $ cat ~/.ssh/id_rsa.pub
 Copy and paste that resulting text as an accepted key on your GitHub account
* Click on your User Icon
 (Go to Settings
e SSH & GPG Keys

* New SSH Key. Title: 426 Cloud Server, Key: Paste

Clone Your Project Repo

Go to your project repo.

Clone or Download "Use SSH"

Copy the link that starts with git@qgithub.com:cph426-2019/travel-notes-

In the AWS instance terminal, run:

« $ git clone <paste>

Change directory into the repository: $ cd travel-notes-...
Fetch all branches of repository: $ git fetch --all

Checkout the server-side branch: $ git checkout server-side

mailto:git@github.com

Install Node.js 10 LTS

The Ubuntu Server's default version of Node.js is 8 and we're using 10
We need to add a custom package archive from NodeSource

* Following: https://github.com/nodesource/distributions/blob/master/README.md

Commands:
» $ curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -
« $ sudo apt-get install -y nodejs
* $ node -v # You should see v10.16.0
Then, try installing and running your server-side app!
e $ npm install
e $ npm run build
* $ npm start # Once you see "Listening on port 1234" - navigate to <your-server-ip>:1234

Ctrl+C to quit once you've got it working

https://github.com/nodesource/distributions/blob/master/README.md

Add a Production Script

 When deploying on the production server, we'll want to simplify our lives and have
a single npm script to:
1. pull
2. build

3. start app

* On your personal machine, add the following script to package.json's scripts:

 "prod": "git reset --hard && git pull && npm run build && sudo NODE_ENV=production npm run start"”

 You'll need to push this to your repo and then pull while logged into the server.

Register as Systemd Service

® Edit Systemd Configuration file For the App

$ sudo nano /lib/systemd/system/blog_app.service

[Unit]
Description=Travel Blog
After=network.target

[Service]

Environment=NODE_ENV=production

Type=simple

User=ubuntu
WorkingDirectory=/home/ubuntu/travel-notes-<YourGithubName>
ExecStart=/usr/bin/npm run prod

Restart=on-failure

[Install]
WantedBy=multi-user.target

« Enable the service: $ sudo systemctl enable blog_app.service

* Run the service: $ sudo service blog_app start

Add a Deploy Script

« SSH'ing in and running commands manually is tedious and error prone

e Let's add one more npm script to make deploying a two step process of:
» Commit and Push your Changes in git
» $ npm run deploy

 We can achieve this by using SSH in a "command mode" to run the command on
our AWS server that restarts your app (replace <ip> with your AWS server's IP:

 "deploy"”:
"ssh -1 ~/.ssh/COMP426-2019.pem ubuntu@<ip> 'sudo service blog_app restart

Listening on the correct Port

* |In production (for now) we'd like to listen on the default HTTP port 80
« Ultimately, we'd like to get HTTPS going but that'll take more admin steps

 To do so, we'll look for a special environment variable to tell us if our server
IS running in production mode (or not).

const PORT = process.env.NODE_ENV === "production"” ? 80 : 1234;
app.listen(PORT, () => console.log(Listening on ${PORT?}))

.on("error", (e) => console.error(e));

