
Deploying to the Cloud

Today we'll deploy your Node.js server application
on a machine running in the AWS cloud!

• Register for AWS

• Go to the service EC2

• Launch New Instance

• Check the "Free-tier Only" box in the search and search for Ubuntu

• Select Ubuntu Server 18.04 LTS (HVM) which is a Linux Operating System

Instance Configuration
• General Purpose t2.micro (Free-tier Eligible)

• Next: Configure Instance Details (Accept Defaults)

• Next: Add Storage (Accept Defaults)

• Next: Add Tags (Accept Defaults)

• Next: Configure Security Group

• Add 2 rules and from the Type drop down select HTTP and HTTPS

• Add 1 more custom TCP rule for port 1234 and accept sources 0.0.0.0/0, ::/0

• This opens up firewall rules that allow us to run HTTP and HTTPS on server

• Review and Launch, Launch!

Key Pairs
• Once the server launches, you need to be able to log into it!

• Amazon EC2 does this by installing a cryptographically secure key pair to
authenticate you with over SSH.

• You should create a new Key Pair name ("COMP426-2019") and download
it.

• You'll download a .pem file that we'll use in order to log into the server.

• From the "Launch Success" screen, you'll see a link to an Instance ID that
looks something like: i-0e52e1ca8ac352206 - click it to see the details of
your server

The Instances Screen

Your Servers A Server's IP Address

SSH'ing with a PEM File
• Let's setup a directory in your user's $HOME directory for SSH files

• $ mkdir -p ~/.ssh

• Move the .pem file to it

• $ mv ~/Downloads/COMP426-2019.pem ~/.ssh

• (Mac Only) Set more restrictive file permissions

• $ chmod 0400 ~/.ssh/COMP426-2019.pem

• Try SSH'ing in and hopefully you can login!

• $ ssh -i ~/.ssh/COMP426-2019.pem ubuntu@<your-server-ip>

Update Your Server's "App Store"
and Upgrade Preinstalled Operating System Programs

• The way to think of a Linux package manager like "aptitude" on Ubuntu is
like an app store for developers and systems admins that is run at the
command line

• The operating system keeps a local cache of package versions and it's best
to update that cache because it could be out of date:

• $ sudo apt-get update

• There may also be security and bug fixes to programs since the latest
release of the operating system. It's worth going ahead and upgrading:

• $ sudo apt-get upgrade

Let's Generate an SSH Key to
Identify the Server on GitHub

• Generate an RSA Key-Pair:

• $ ssh-keygen -t rsa -b 4096

• Press enter to accept defaults without passphrase

• Print out the generated public key:

• $ cat ~/.ssh/id_rsa.pub

• Copy and paste that resulting text as an accepted key on your GitHub account

• Click on your User Icon

• Go to Settings

• SSH & GPG Keys

• New SSH Key. Title: 426 Cloud Server, Key: Paste

Clone Your Project Repo
• Go to your project repo.

• Clone or Download "Use SSH"

• Copy the link that starts with git@github.com:cph426-2019/travel-notes-

• In the AWS instance terminal, run:

• $ git clone <paste>

• Change directory into the repository: $ cd travel-notes-...

• Fetch all branches of repository: $ git fetch --all

• Checkout the server-side branch: $ git checkout server-side

mailto:git@github.com

Install Node.js 10 LTS
• The Ubuntu Server's default version of Node.js is 8 and we're using 10

• We need to add a custom package archive from NodeSource

• Following: https://github.com/nodesource/distributions/blob/master/README.md

• Commands:

• $ curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -

• $ sudo apt-get install -y nodejs

• $ node -v # You should see v10.16.0

• Then, try installing and running your server-side app!

• $ npm install

• $ npm run build

• $ npm start # Once you see "Listening on port 1234" - navigate to <your-server-ip>:1234

• Ctrl+C to quit once you've got it working

https://github.com/nodesource/distributions/blob/master/README.md

Add a Production Script
• When deploying on the production server, we'll want to simplify our lives and have

a single npm script to:

1. pull

2. build

3. start app

• On your personal machine, add the following script to package.json's scripts:

• "prod": "git reset --hard && git pull && npm run build && sudo NODE_ENV=production npm run start"

• You'll need to push this to your repo and then pull while logged into the server.

Register as Systemd Service
• Edit Systemd Configuration file For the App

$ sudo nano /lib/systemd/system/blog_app.service

[Unit]

Description=Travel Blog
After=network.target

[Service]
Environment=NODE_ENV=production
Type=simple
User=ubuntu
WorkingDirectory=/home/ubuntu/travel-notes-<YourGithubName>
ExecStart=/usr/bin/npm run prod
Restart=on-failure

[Install]
WantedBy=multi-user.target

• Enable the service: $ sudo systemctl enable blog_app.service

• Run the service: $ sudo service blog_app start

Add a Deploy Script
• SSH'ing in and running commands manually is tedious and error prone

• Let's add one more npm script to make deploying a two step process of:

• Commit and Push your Changes in git

• $ npm run deploy

• We can achieve this by using SSH in a "command mode" to run the command on
our AWS server that restarts your app (replace <ip> with your AWS server's IP:

• "deploy":  
"ssh -i ~/.ssh/COMP426-2019.pem ubuntu@<ip> 'sudo service blog_app restart'"

Listening on the correct Port
• In production (for now) we'd like to listen on the default HTTP port 80

• Ultimately, we'd like to get HTTPS going but that'll take more admin steps

• To do so, we'll look for a special environment variable to tell us if our server
is running in production mode (or not).

const PORT = process.env.NODE_ENV === "production" ? 80 : 1234;
app.listen(PORT, () => console.log(`Listening on ${PORT}`))
 .on("error", (e) => console.error(e));

