
Server-side Introduction
in Node.js

Today’s Goals
• Setting up a Node.js project from scratch

• Writing an HTTP Server in Node.js using:

• Node.js’s built-in HTTP module

• A minimalist framework such as Express.js

• An introduction to server-side rendering

• Handling HTML <form> POST data

Setting up a TypeScript Server-side
Project from Scratch

• Setup a directory for your project:

• mkdir 10-node-from-scratch

• cd 10-node-from-scratch

• Initialize a package.json file:

• npm init -y

• Ignore the node_modules folder (where node installs libraries) in your repo:

• echo “node_modules” >> .gitignore

• Install development dependencies (these are the libraries our project needs):

• TypeScript, ts-node (runs TypeScript without precompiling), TypeScript Node.js Type Definitions

• npm install --save-dev typescript ts-node @types/node

• Add a "start" script to npm:

• "start": "ts-node index.ts"

• Add an "index.ts" file to the project with the contents of: console.log("Hello, world");
• Try running the project's start script! npm run start

Our first Server-side Application

import { createServer } from 'http';

let server = createServer((request, response) => {
 response.statusCode = 200;
 response.setHeader("Content-Type", "text/text");
 response.write("Hello, world");
 response.end();
});

server.listen(1234, () => console.log("Listening on 1234"))
 .on("error", (e) => console.error(e))

Let's Add Some Example Resources

• /random - generate a random number

• /json - respond in content-type application/json

• /redirect - return a 302 redirect to location /json

• /not-found - respond with a 404 error

Using Node's HTTP Library Directly is Uncommon

• It imposes no structure on your server's application design

• The intent of Node's built-in HTTP library is to provide "low-level" primitives

• After 20 years of back-end development, common needs identified:

• Routing requests tends to be organized by resource (URL)

• Per resource, HTTP methods have different outcomes (GET vs POST)

• There are cross-cutting concerns you'd like to share across handlers

• Such as user identification, logging of requests, and so on, "middleware"

• Framework's structure address common needs so you don't reinvent the wheel

Adding Express Framework
• The Express framework is one of Node's most popular on the server-side

• We're choosing it because it's minimal and learning its structure translates well to popular frameworks in
many other languages:

• Ruby: Sinatra, Rails (Batteries included)

• PHP: Silex, Slim

• Python: Flask

• To add it to your project we need to install it as a full dependency:

• npm install --save express

• Since we're developing in TypeScript, we'll also need to install its types:

• npm install --save-dev @types/express

Our first Express Application

import * as express from "express";

let app = express();

app.get("/", (req, res) => {
 res.send("Hello, world!!!");
});

app.listen(1234, () => console.log("Listining on port 1234"))
 .on('error', (e) => console.error(e));

Try Adding Some Routes
• For now, these will all bet routes accessible with the GET method:

• /time - Respond with "The current time is " + new Date()

• /redirect - Respond by 302 redirecting to "/time"

• Search for how to redirect in Express

• /hits - Declare a global variable named hitCounter and initialize it to 0.

• Each time /hits is accessed, increment the hitCounter variable by 1 and
respond with the string `The current hit count is ${hitCounter}`

Let's Add Middleware

• What if for every incoming request we want to:

• Log its method and URL

• Update the hitCounter variable by 1

• We can use a middleware function to achieve these cross-cutting concerns

• Generally, middleware is used to abstract out common pre- or post-
processing steps to requests/responses across many or all routes.

Simple Middleware
app.use((req, res, next) => {
 console.log(`${req.method} ${req.url}`);
 hitCounter += 1;
 next();
});

• A middleware function is registered before routes and makes use of a third
parameter named next.

• The next callback is a function that tells Express: "Pass these request/
response objects on along to the next middleware/route. I did not handle it."

Adding a Template Engine
• If we want to respond with HTML from our back-end, which is common, it is best practice to use an HTML

template engine rather than building up HTML response strings manually.

• There are a ton of HTML Template Libraries

• We'll choose Handlebars because it's reasonably simple

• To add it to our project we have two production dependencies:

• npm install --save handlebars express-handlebars

• And one development dependency:

• npm install --save-dev @types/handlebars

• Setup directories for views, views/layouts, views/partials

• Register view engine: https://www.npmjs.com/package/express-handlebars

https://www.npmjs.com/package/express-handlebars

