
HTTP

Scavenger Hunt
1. What is a web resource?

2. What are 4 Common Verbs or methods used in the HTTP protocol?

3. What are HTTP headers? What is the Accepts header? What about Content-
type? User-agent?

4. What is the meaning of 200-level HTTP response codes? Find 2 examples.

5. What is the meaning of 300-level HTTP response codes? Find 2 examples.

6. What are the meanings of 400-level HTTP response codes?  
500-level? Find 1 example in each range.

An HTTP Request Has
• Request Line

• Method (GET/POST/PUT/DELETE)

• Path

• HTTP Version (e.g. HTTP/1.1)

• Headers

• Key-Value string pairs delimited by “:”s

and separated by new lines

• Body

• If the request is giving content to the

server (such as a form submission,
application “post” or “save”)

POST /tweet HTTP/1.1

Host: api.twitter.com
Content-Type: application/json
Accept: application/json
Cookie: <CRYPTO_IDENTIFIER>

{“message”:“Hello, World”}

HTTP Server Receives the Request
• A reasonable mental model for HTTP is that of a (remote) function call

• The pieces of an HTTP request are parameters to a server-side function

• Very hand-waving psuedo-code:

let serverApp = (method, path, headers, body) => {  
 // … server-side application logic …  
 return new HTTPResponse(/* TBD */);  
};

• Each piece of information in a request should be thought of as a

An HTTP Response Has
• Status Line

• HTTP Version

• Status Code (e.g. 200, 404, 500)

• Reason Phrase (e.g. Ok, Not Found, Internal

Server Error)

• Headers

• Just like a request, key-value pairs delimited

by ‘:’s and separated by new lines

• Response Body

• Optional, but more common than in the client.

For example, when a web page is requested
its HTML comprises the response body.

HTTP/1.1 404 Not Found

Host: api.twitter.com
Content-Type: text/html

<!doctype html>
<html>
 <head>  
 <title>Page Not Found</title>  
 ...

HTTP Server Receives the Request

• Very hand-waving psuedo-code:

let serverApp = (method, path, headers, body) => {  
 
 // … server-side application logic …  
 
 return new HTTPResponse(statusCode, headers, body);  
};

