Prototypes vs. Classes
Model, View, ViewController

Class 4




Why learn prototypal inheritance?

Evan You
. Follow Vv
@youyuxi

| interviewed for a Facebook internship when
| was in grad school (probably 2011) and
falled because | couldn't whiteboard
prototypal inheritance. | only learned JS

properly after that &

Evan You is the author of one of today’s big 3 JavaScript frameworks: Vue.js



Prototypal Inheritance

Last night you all read: https://javascript.info/prototypes

Prototypal Inheritance was JavaScript’s predecessor to Class based inheritance (ES2015)
* Concept first introduced in the Self programming language in 1987
In 2019, your projects should choose Classes over Constructor Functions and Prototypes

However, since Classes are implemented in terms of Prototypes and many existing libraries still make use of Prototypes,
as a computer scientist front-end developer you should understand it.

The gist is each object has a reference to a null-terminated linked list of other objects via their special [[Prototype]]
property. If you access an object’s property, and that property does does not exist, it searches up its prototype linked list
for the first match.

* Many more details, as covered in the text, but that’s the big idea.
You have more flexibility as a programmer in a prototypal inheritance than in traditional class inheritance

* But history has proven this flexibility does not scale well (interoperability problems) and often leads to nuanced bugs


https://javascript.info/prototypes

Questions on Prototypes?



Functions and this

Methods are just functions defined on an object’s prototype chain in JS.

When you call a method using a method call expression, the special parameter this is established
automagically by the language interpreter.

* For example, adaDog.speak() is a method call expression.

* |n the example, the object is adaDog and the function is its speak property. When this method call is
evaluated, this is adaDog.

However, if you establish a reference to the function and invoke it using a function call expression, then
this is unbound.

* For example, let speakFn = adaDog.speak; establishes speakFn as a reference to adaDog.speak.

* Then, calling speakFn() using a function call expression, assigns nothing to this in function body.

Reference: https://javascript.info/object-methods



https://javascript.info/object-methods

Refence: Closure

* As discussed on the whiteboard, JavaScript has native support for lexical
closures. The following reference document explains closures in detail:
https://[avascript.info/closure



https://javascript.info/closure

call and apply

You can also dynamically bind this using a function’s cal l and apply methods
The call Method’s first parameter is the this binding, subsequent are arguments

The apply Method’s first parameter is this binding, followed by an array of args

Reference: https://javascript.info/call-apply-decorators



https://javascript.info/call-apply-decorators

Example

e Let’s attempt to have a simple object method called one second after our
page loads using setTimeout...

o We’ll be working in the 03-this example.
 Ways around this binding problems:
1. Wrap the method call in an anonymous function (closure).

2. Use the bind method of Function’s prototype.
Reference: https://javascript.info/bind



https://javascript.info/bind

Model - View - ViewController

* Let's work with example 04 in code to put together an image gallery!



