
Prototypes vs. Classes 
Model, View, ViewController

Class 4



Why learn prototypal inheritance?

Evan You is the author of one of today’s big 3 JavaScript frameworks: Vue.js



Prototypal Inheritance
• Last night you all read: https://javascript.info/prototypes


• Prototypal Inheritance was JavaScript’s predecessor to Class based inheritance (ES2015)


• Concept first introduced in the Self programming language in 1987


• In 2019, your projects should choose Classes over Constructor Functions and Prototypes


• However, since Classes are implemented in terms of Prototypes and many existing libraries still make use of Prototypes, 
as a computer scientist front-end developer you should understand it.


• The gist is each object has a reference to a null-terminated linked list of other objects via their special [[Prototype]] 
property. If you access an object’s property, and that property does does not exist, it searches up its prototype linked list 
for the first match.


• Many more details, as covered in the text, but that’s the big idea.


• You have more flexibility as a programmer in a prototypal inheritance than in traditional class inheritance


• But history has proven this flexibility does not scale well (interoperability problems) and often leads to nuanced bugs

https://javascript.info/prototypes


Questions on Prototypes?



Functions and this
• Methods are just functions defined on an object’s prototype chain in JS.


• When you call a method using a method call expression, the special parameter this is established 
automagically by the language interpreter.


• For example, adaDog.speak() is a method call expression.


• In the example, the object is adaDog and the function is its speak property. When this method call is 
evaluated, this is adaDog.


• However, if you establish a reference to the function and invoke it using a function call expression, then 
this is unbound.


• For example, let speakFn = adaDog.speak; establishes speakFn as a reference to adaDog.speak.


• Then, calling speakFn() using a function call expression, assigns nothing to this in function body.


• Reference: https://javascript.info/object-methods

https://javascript.info/object-methods


Refence: Closure

• As discussed on the whiteboard, JavaScript has native support for lexical 
closures. The following reference document explains closures in detail: 
https://javascript.info/closure

https://javascript.info/closure


call and apply

• You can also dynamically bind this using a function’s call and apply methods


• The call Method’s first parameter is the this binding, subsequent are arguments


• The apply Method’s first parameter is this binding, followed by an array of args


• Reference: https://javascript.info/call-apply-decorators

https://javascript.info/call-apply-decorators


Example
• Let’s attempt to have a simple object method called one second after our 

page loads using setTimeout…


• We’ll be working in the 03-this example.


• Ways around this binding problems:


1. Wrap the method call in an anonymous function (closure).


2. Use the bind method of Function’s prototype.  
Reference: https://javascript.info/bind

https://javascript.info/bind


Model - View - ViewController

• Let’s work with example 04 in code to put together an image gallery!


