
DOM Event Handling
Lecture 3



Follow-ups Yesterday

• Source code of HTMLElement in Chrome


• Class Header: https://github.com/chromium/chromium/
blob/master/third_party/blink/renderer/core/html/
html_element.h


• Implementation: https://github.com/chromium/
chromium/blob/master/third_party/blink/renderer/core/
html/html_element.cc

https://github.com/chromium/chromium/blob/master/third_party/blink/renderer/core/html/html_element.h
https://github.com/chromium/chromium/blob/master/third_party/blink/renderer/core/html/html_element.h
https://github.com/chromium/chromium/blob/master/third_party/blink/renderer/core/html/html_element.h
https://github.com/chromium/chromium/blob/master/third_party/blink/renderer/core/html/html_element.cc
https://github.com/chromium/chromium/blob/master/third_party/blink/renderer/core/html/html_element.cc
https://github.com/chromium/chromium/blob/master/third_party/blink/renderer/core/html/html_element.cc


Events
• Web pages become interactive when they can respond to inputs from the user.


• Clicks a button


• Submits a form


• Swipes on a touch device


• Beyond user input events, there are events the browser can notify your code of.


• When the page finishes loading


• When the computer loses/gains access to the internet


• More thorough list: https://developer.mozilla.org/en-US/docs/Web/Events

https://developer.mozilla.org/en-US/docs/Web/Events


General Eventing Strategy

• Your responsibility as the application developer is to tell 
the browser: 
 
“When some type of event happens on a specific object* 
in my application, please call this function.”


* We’ll see that objects in the DOM can listen for events that 
happen to its children, as well.



The EventTarget Interface

• The interface of objects that allow you to register event 
handling functions with implement EventTarget


• Many BOM and DOM classes implement the EventTarget 
Interface including…


• Window


• Document


• Element (and, thus, every HTMLElement!)



EventTarget Interface
• Objects implementing EventTarget have the following three methods 

associated with them:


• #addEventListener(“event type”, handlerFn); - Register. When the 
event occurs, the event is “raised” and any handlerFns are called.


• #removeEventListener(“event type”, handlerFn); - Unregister a handler. 
This requires having a reference to the handler function.


• #dispatchEvent(event); - Raise an event synthetically (typically for 
testing, occasionally clever things you can do with this)


• Reference:  
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget


Mouse Events
• Example types of mouse events:


• mousedown/mouseup - button clicked/released


• mouseover/mouseout - mouse pointer enters/leaves


• mousemove - mouse pointer moves while inside an event


• Reference: 


• https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent


• https://javascript.info/mouse-events-basics

https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://javascript.info/mouse-events-basics


Let’s Tinker with Events!



Event Bubbling

• When an event occurs on an HTMLElement, the event is 
first raised on the most specific element it applied to.


• Then, it is raised on the target’s parent element. Then on 
its parent element, and so on, until the event reaches the 
root element.


• This enables event delegation.



Event Bubbling

• this or event.currentTarget is the element whose 
handler is currently running


• target was the element which kicked off the event


• Event bubbling propagates the event up the hierarchy 



Event Delegation
• A powerful, common pattern in web applications that involve many similarly 

typed “components” coexisting in some container (such as thumbnails in an 
image gallery) is event delegation.


• Event delegation employs event bubbling by listening for events on a parent 
container for its children’s events rather than on each child individually.


• This technique has two important advantages:


1. Fewer event listeners needed (one per parent container rather than one per 
child).


2. Less book keeping of event listeners when the children are dynamically added 
and removed (with delegation, you do not need to manually add/remove 
listeners to each child as they’re added/removed).


• Reference: https://javascript.info/event-delegation

https://javascript.info/event-delegation

