
Review

Client Server

HTTP Client

Web Browser
HTML/CSS Engine
JavaScript Engine

Client-side
Application Logic and

Design

HTTP Server / Proxy

Application Server

Server-side
Application Logic Data

HTTP
Protocol

Review
• JavaScript Language Concepts (closures, prototypes, this binding)

• Client-side Web Application Technologies - HTML/CSS/JavaScript

• The HTTP Protocol - Requests, Responses, and their contents

• Server-side Web Application Concepts

• Sources of request inputs (url path parameters, headers, body)

• Routing (by method and request path), Middleware

• Server-side response rendering and redirecting

• Database Integration

Review Doc

• Form groups of 2 or 3!

• One of you start a new Google doc that's a review study guide.

• We'll spend 10 minutes brain dumping in groups per subject and then
time on Q&A and sharing notes

Topic #1 - HTML and the DOM

• What is the relationship between HTML and the DOM?

• How can your client-side script code access elements in the DOM? The more
the better.

• Why is the significance of DOM events and how do you interact with them?

Topic #2 - HTML, the Browser, and HTTP
• What will be sent to the server when you click on an <a> link? Think as broadly

(but also specifically) as possible.

• A single response from the server can lead to your browser making subsequent
requests to the server. What are two useful, fundamentally different examples of
this phenomena?

• How can an HTML document, without any JavaScript, enable a user to make a
POST request from their browser? How does the developer control what
information is sent to the server in the POST request?

Topic #3 - HTTP and The Server-side

• Why is routing based on both the HTTP method and URL useful? Think of
at lease one example use case where it makes sense to have a route with
the same URL and different methods.

• What are common sources of input from an HTTP request that a server
app can use in its logic and response? Try to think of as many as possible
with an example of how you accessed that input in an express route's req
object.

Topic #4 - Data Persistence
• Why is it bad practice to store application data in global variables? Why prefer

another service, such as MySQL?

• In an application with user authentication, what should you store instead of the
user's password in plaintext? How are you able to store something other than their
password and still allow them to login?

• In an HTTP response, how can the server instruct the client to store data? How
does the client present this data back to the server in a request? How is this
capability useful?

What is this?

What is this? A mostly right flowchart.

Is this in an arrow function?

Yes

Whatever this is outside
of the arrow function.

No Is the function the
result of a call

to bind?

Yes

this is what was given
as an argument to bind.

No

Is the function being
evaluated via
call or apply?

Yes

this is the first
argument to
call / apply

No

Was the function call
made using method call syntax?

Yes

this is the object
of the method call

No
Is JavaScript running

in strict mode?

No
this is

window

Yes

this is undefined

Subjects to Continue Exploring

Advanced HTML / CSS
• Progressive Web Apps - Built sites that can be installed "like an app" on phones / tablets

• ARIA Accessibility - Improve access to people using assistive technologies

• Semantic HTML - Use tags and attributes that are convey meaning

• Responsive Images - Load images dependent on screen type

• Audio and Video tags for rich media embedded in pages

• CSS Grid Layout

• Z-index for content stacking control

• CSS Animations

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://internetingishard.com/html-and-css/semantic-html/
https://internetingishard.com/html-and-css/responsive-images/
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Positioning/Understanding_z_index/The_stacking_context
https://developer.mozilla.org/en-US/docs/Web/CSS/animation

HTML API Scripting
• fetch - make HTTP requests in JavaScript without page reloads

• localStorage - key-value persistent storage a web browser maintains

• indexeddb - document database in the web browser

• service workers - create rich offline client-side applications

• web workers - run computationally expensive JS tasks in background threads

• touch events - make client-side experiences better on phones/tablets

• web sockets - create a long lived, bi-directional connection to a server for "server push"

• Many more! https://developer.mozilla.org/en-US/docs/Web/API

https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events
https://developer.mozilla.org/en-US/docs/Web/API/Websockets_API
https://developer.mozilla.org/en-US/docs/Web/API

Client-side Web Frameworks

• React (for views)

• Angular - Model and Views

• Vue.js - HTML, CSS, JS components

https://angularjs.org/
https://vuejs.org/

HTTP Protocol
• HTTPS (Secure Connection) Certificate

• Explanation of HTTPS

• Service to get a free certificate: https://letsencrypt.org/

• Steps for using HTTPS in node.js/express

• Cross-Origin Resource Sharing - Share resources across domains

• Content Security Policy

• Caching - Overview of caching and related headers

• HTTP Authorization - Basic, Bearer

• Evolution of HTTP

https://developer.mozilla.org/en-US/docs/Web/HTTP
https://tiptopsecurity.com/how-does-https-work-rsa-encryption-explained/
https://letsencrypt.org/
https://itnext.io/node-express-letsencrypt-generate-a-free-ssl-certificate-and-run-an-https-server-in-5-minutes-a730fbe528ca
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

Server-side Application Development

• Idempotence of GET, PUT, and DELETE HTTP method requests

• Implement RESTful APIs

• OAUTH2 for 3rd party identity management/integration - (Google/FB login)

• Multi-part request handling - allow file uploads in your web app

• Web sockets for rich communication between server and client

• Data validation and sanitization for user inputs

https://www.restapitutorial.com/lessons/idempotency.html
https://www.restapitutorial.com/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/identity
https://github.com/expressjs/multer
https://medium.com/@martin.sikora/node-js-websocket-simple-chat-tutorial-2def3a841b61

DevOps

• The 12 Factor Application

• Serverless Application Development (AWS Lambda, Netlify Functions)

• Containers and Docker

• Web Server / Reverse Proxy: nginx

• Web Caching Server: https://varnish-cache.org/

https://12factor.net/
https://docker-curriculum.com/
https://www.nginx.com/
https://varnish-cache.org/

