
Server-side Authentication 
and State



Achieving State in a Stateless Protocol
• There are a number of ways state can be maintained:


• Client-side:


• Embedded in URL query parameters or paths


• Embedded in hidden form fields


• In the script running on a single page load


• In localStorage / indexeddb storage that scripts can access between loads 


• Server-side


• By means of using cookies or other headers to remember user / session identifiers



Cookies
• The server can give the client a cookie.


• Cookies are established in a Set-Cookie response header.


• Cookies are name/value pairs with some restrictions.


• The client saves the cookie.


• In the Set-Cookie header, the server instructs how long to save the cookie.


• The cookie is stored specific to the domain and potentially path (if set in Set-Cookie).


• On subsequent requests to the the same domain name, the client gives the cookie back.


• The cookies are sent back in a Cookie request header.



Secure Hashes
• Hashing is a one-way encoding of a secret


• Algorithmic generation of a secure hash for a secret is easy once algorithm is verified/implemented.


• Outside of scholarly, throw-away projects, never implement a secure hashing also yourself.


• Exceedingly difficult to reproduce the secret from the hash


• Given the secret again in the future, easy to check whether some hash is valid for the secret.


• Passwords are (or should be) stored as secure hashes!


• When you register or reset a password, the server stores a secure hash in DB


• When you login, and present your password again, the server checks validity of hash.


• Your password should never be stored in plaintext by a 3rd party service (and you should never store your users' 
passwords in plaintext!)


• Which hash to use? A reasonable choice today is bcrypt. Don't use MD5/SHA1/etc. Take COMP535 for more detail!



Using bcrypt
• To add to our project:


• npm install --save bcrypt


• npm install --save-dev @types/bcrypt


• Hash:

const SALT_ROUNDS = 12;
let hash = await bcrypt.hash(req.body.password, SALT_ROUNDS);

• Test validity:

let isValid = await bcrypt.compare(req.body.password, process.env.ADMIN_PASSWORD_HASH);



Using cookies
• Cookie parser:


• npm install --save cookie-parser


• npm install --save-dev @types/cookie-parser


• To use encrypted cookies, we'll need to add a COOKIE_SECRET to our .env file


• Fine choice to randomly generate a secret, such as a UUID


• Online UUID generator: https://www.uuidgenerator.net/


• Add variable COOKIE_SECRET=...uuid... to .env file


• Import cookie parser: import * as cookieParser from "cookie-parser";


• Register it as middleware for admin area: router.use(cookieParser(process.env.COOKIE_SECRET));

https://www.uuidgenerator.net/


Signed Cookies
• Our cookie names and values will be sent in plain-text in headers


• We'd like to verify the value of the cookie was established by our server


• We don't want the client to be able to set any value they'd like!


• By using a cookie library's signing capability, you can establish the 
veracity of cookies. Their contents come with a signature that is effectively 
a secure hash that also encodes server-side secret.


• In our case, the COOKIE_SECRET env variable.



Add Authentication to our Project

• Let's add authentication to the admin area of your project!



Sessions and User Data Discussion


